产品别名 |
塑料排水板,蓄排水板,凹凸排水板,毛细排水板 |
面向地区 |
选用碳纤维(CF)、玻璃纤维(GF)和高强玻璃纤维(SGF)为增强材料,制作CF,CF/GF和CF/SGF层间组合混杂纤维增强木梁,并对其受弯性能进行了试验研究,同时分析了该木梁的破坏形态和破坏机理,讨论了其荷载-位移特征、极限承载力和延性.结果表明:与单一CF增强相比,合理匹配混杂纤维增强复合材料(HFRP)可显著提高木梁的承载力和延性.提出了HFRP增强木梁的极限承载力计算方法.
设计了8种干湿循环侵蚀制度,定量分析了不同侵蚀制度同混凝土中氯离子传输深度、氯离子含量分布规律、表面氯离子含量、氯离子扩散系数、对流区及氯离子传输效率之间的关系.结果表明:干湿循环加速氯离子的传输于一定范围;不同干湿制度下,表面氯离子含量随干湿比的增加而有所增加;干湿循环下混凝土中对流区的出现具有时间性;随着干湿循环周期的增加,对流峰值以幂函数增加,且干湿比越大越有利于氯离子峰值浓度的积累;干湿循环制度不同,但干湿循环1个周期的时间相同且干湿比为5:1时,氯离子向混凝土内的传输效率.
用聚或聚丙烯制成的口琴式条带作芯带,两面包以非织造土工织物作滤层成为塑料排水带(板)。芯带起支撑作用并将滤层渗出来的水向上排出
为了研究高吸水性树脂(SAP)对混凝土孔隙特征及抗压强度的影响,采用干拌方法拌制SAP混凝土,基于压和抗压试验,对2种配合比和3种SAP掺量的混凝土进行分批试验,测定各组试样的内部孔结构特征参数和抗压强度.结果表明:混凝土的比孔容积、孔隙率、可几孔径与SAP掺量呈正比关系;掺加SAP后,混凝土的抗压强度与比孔容积、孔隙率、可几孔径呈反比关系;随着SAP掺量的增加,小于1.0μm的孔隙率呈增大趋势,而大于1.0μm的孔隙率无明显的变化规律.
塑料排水带(板)用插板机插入软土地基,在上部预压荷载作用下,软土中空隙水由塑料排水带(板)向上排到上部铺垫的砂层(或水平塑料排水带)中,向下游排出,以加速软基固结。
原材料 芯板采用聚丙烯、聚为原料,严禁使用再生料。将板岩废弃物粉磨后以不同比例替代水泥制成胶砂试件,并测试了其抗折强度、抗压强度、毛细管吸水量和干缩性能.结果表明,当废弃板岩石粉等质量替代水泥不超过20%(质量分数)时,试件28 d抗压强度与纯水泥胶砂强度基本持平,超过21%,表明废弃板岩石粉有一定的火山灰活性;在废弃板岩石粉替代量不大的情况下,试件的毛细管吸水量和干缩性能良好;用废弃板岩石粉作为水泥掺和料具有很高的经济价值和环保价值.
外观质量
槽型塑料排水板(带)板芯槽齿无倒伏现象,钉型排水板(带)板芯乳头圆滑不带刺。
塑料排水板(带)板芯无接头,表面光滑、无空洞和气泡、齿槽应分布均匀。
塑料排水板(带)滤膜应符合以下规定:
每卷滤膜接头不多于一个,接头搭接长度大于20cm;
滤膜应包紧板芯,包覆时用热合法或粘合法;
当用粘合法时,粘合缝应连续,缝宽为5mm+1mm。
运用多步接枝工艺,实现了掺杂Ti O2粒子(M系列)的表面改性,制备出系列M粒子-氰酸酯树脂(CE)复合材料。研究了复合材料的摩擦力学性能及洛氏硬度的变化。结果表明,加入少许M系列粒子(质量分数4%)后,可以使得氰酸酯树脂(CE)的摩擦力学性能得到改善。当复合材料中M-2粒子的含量为3wt%时,摩擦系数下降36%,摩擦消耗下降约60%,增强了复合材料的耐磨性;当M-2粒子的含量为4wt%时,复合体系洛氏硬度提高了10.4%。
在研制玻璃纤维增强造纸污泥纤维板的基础上,分析了偶联剂施加量和玻璃纤维长度对该板材物理力学性能的影响,并研究了这种板材的复合机理.结果表明:随着偶联剂施加量的增大,玻璃纤维长度的增加,玻璃纤维增强造纸污泥纤维板的各项性能均有所提高,当玻璃纤维长度为4cm,偶联剂施加量≥0.5%(质量分数)时,其各项力学性能均可达到国家标准.红外光谱分析发现,偶联剂可改善玻璃纤维表面极性,使其与酚醛树脂胶形成共价连接.扫描电镜观察发现偶联剂能增加玻璃纤维表面粗糙度,这可进一步改善玻璃纤维表面的润湿性,有利于胶合.
最近来访记录
最新采购